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ABSTRACT

The success of the additive potential model of colored quarks for
the masses, decay rates, and other properties of single mesons and
baryons does not imply that this model can yield the observed meson-
nucleon and nucleon-nucleon interactions. We give a cocmprehensive
discussion of this issue. In agreement with previous authors, we conclude
that, on the contrary, this model predicts inverse-power color-analog
van der Wazls potentials between separated hadrons which are in substantial
contradiction with experimental data. Ve also discuss pathologies of
n§n~abeliaﬁ confining potentials, and show that the Hamiltonian is
unbounded below for an arbitrary number of quarks and antiquarks in a
definite color state for all color states, except the singlet, triplet,

and antitriplet.
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I. INTRODUCTION

Very likely quantum chromodynamics {(QCD}, the local gauge theory
of the interacrion of colored quarks with colored gluons, sheuld form
the basis of 2 proper description of nucleons and mesons, as well as
the basis for the derivation of the meson-nucleon and nucleon-nucleon
interactions. 1t is attractive to attempt the simplest use of QCD by
abstracting from it an additive two-body potential model in which the
confining potential which binds quarks into nucleons and quarks and

antiquarks into wesons is represented by a potential of the form

B, = - I F,_F, V(|lx,-x.D
i 1< i°] i-3° "0

(0-) L] ] .th . "
; s are the SL(B)color generators for the 1 quark

where the eight ¥
or antiquark.l_ However, as emphasized in [1], it is important to note
that, although the F'F color structure in (1) follows from one~glucon
exchange in QCD, it is not clear that QCUD implies that the confining
potential, which does not come from one-gluon exchange alone, has this

color structure.

Models in which hadrons are made of constituent quarks interacting

via two-body forces were Introduced in the early days of the quark model.

These models provided a number of successful relations between hadron

masses by using effective matrix elements as free parameters tec describe

the unknown quark forces [2-6]. At this level there was no understanding

(a)

1. For quarks (antiquarks) F is-% A(Q) (—»%A(Q)T). We abbreviate
{a) ()
5, Fy Fj by F, Fj.

1)
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of the saturation of these forces at the quark-antiquark and three-quark
systemns, or of the relation between quark-antiquark forces in mesons and
quark-quark forces in baryons. The introduction of the color degree of
freedon solved the statistice problem [2,7,8) and partially explained
saturation [7,8,9]). An interaction of the form (1) was introduced by
Nambu who obtained a hadron mass formula which had the saturation property
for color-singlet states and pushed non-singlet states to high mass;
However, Kambu did not consider the spatial dependence of the potential,
which introduces qualitatively different effects,

A model using an interaction of the form (1) with a general spatizl
dependence was shown to give the desired relation between strong quark-
quark and quark-antiguark forces and to give very much weaker forces
between color singlet hadrons [10}. Exotic bound multiquark states
were shown to exist in models with sharply-cut-off short-range potentials,
such as a sqﬁare well, but not to exist for reasonably spooth petentizls,
such as Yukawa or power law potentials., Long range van der Vaals forces
were not considered, since the concept of confinement had not vet been
introduced., It was natural at that time to assume a Yukawa potential
with a long range cutoff, since no zero-mass gluons had been
observed. However, the explicit results [10] for the two-quark-twe-antiguark
system hold for potentials with arbitrary spatial dependence, and are used
below to calculate van der Waals forces for confining potentials.

Confining potentials which become infinite at large distances cause
serious difficulty in multiquark systens, becaucse the potential is not
positive definite and can give negative infinite energies for systems of

widely separated particles. In particular, Nambu's results do not hold
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for states which are not color singlets or triplets because the
Haziltonian is unbounded from below in such states.

The success of the additive potential model of colered quarks for
the wasses, decay rates, and other preoperties of single mesons and -
baryons does not imply thzt this model can yield the observed meson-
nucleon and nucleon-nucleon interactions.2 Indeed, the validity of this
model for the description of the forces has been challenged, because this
model leads to spurious long-range interactions between-separated
hadrons [1,10,13-16,21,22] which contradict experimental data. However,
the literature contains conflicting results for the ﬁower behavior of
the long-range interactions: some authers give an a2a-4 potential
between hadrons separated by a distance a if the confining potential
goes as % between quarks [15], and cther authors give au-& [1,10,14,16-18].
We believe the latter result is correct. In addition, the negative conclusiom
about the validity of the model for the interhadron forces has itself been
questioned [23]. Thus the situation remains somewhat confused.

The purpose of this article is to give a comprehensive discussion of
the problem of unphysical long-range forces in potential medels, and
derive a number of rigorous results based on the use of the variational

principle. In agreement with previous authors, we conclude that this

2. Without trying to give an exhaustive set of references, we cite some
articles which deal with color-analog van der Waals forces or with
attempts to derive the nucleon~nucleon interaction from the quark
wodel [1,10-22], We emphasize that we use the phrase cclor van der Waals .
forces to refer to residual irverse-power inferactions between separated
hadrens, not the exponentially-decreasing strong interactions which are,
presumably, also a residual effect of the color interactions among

quarks and gluons.
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model predicts inverse-power color-analog van der Waals potentials
between separated hadrons which are in contradiction with present

expericental data.
I1. PECULIAR PROPERTIES OF CONFINING POTENTIALS

We first note that the interaction (1) has very peculiar properties.
If it is attractive and confining, i.e. V(r) 2 0 and V(r) - =, T > =, in
the color-singlet quark-antiquark state and in the color-antitriplet
quark-quark state, then it is repulsive and anticonfining, 1i.e. <HI>
is unbounded beiow, in the color-octet quark-antiquark and color-sextet
quark-quark states.
For a quark and antiquark in the state §, which is either a color-

. . 3
singlet or a color-octet state, we use the Casimir operator™ and

. — 2= 2 . 2= .
c{y) = (F1+F2) F,° 4 28, 0F, + F, c@3) + 2F, F, + C{3*) (2)
to conclude that
2F,°F, = Cly) -~ 2Cc(3), (3)

so that (for localized static quarks =-- we comment later that introducing

3. 1ne seconu—order Casimir operator of SU(3} is given by
e o= e 2. 2
C=71-F 3(11 f1f2+f2 )+ f1
for the irreducible representation whose Young tableau has f1 boxes
in the first row and £2 in the second., C is the same for a representation-

and its complex conjugate. We give C for representations of small

¢imension; C(1) = 0, C(3) = 4/3, C(6) = 10/3, C(8) = 3, and C(10) = 6,



wave packets and kinetic energy does not change our conclusions)

= - 4
<1(qq) [Hlil(qq):v =3 v(rqa) >0 @
and

o - s = _1.. - 1 - ®
<8(qq) K, 18(qq)> £V (rqq) - -, T . (5)

For three quarks in the color-singlet (baryon) state, a sirilar argunent

using the fact that each qq state is in a color antitriplet shows that
2
<1(qqq) |K  |1(aqq)> = §IV(z ,) + V(r,3) + Viry)] 2 C. ©

This interaction is unbounded both above and belowh in a color-octet three-
quark (baryon) state, since

<8(qgq) [H, [S(aq)> = 3 V(r) » =, T + =, (7

for a state with r = T = T

12 23 = r; while

31

<8(qqq) | [8{qqq)> = - %— V{a) + -~ =, a + =, (8)

for a state with the guarks at and », in a 3* state, where r,, 1s finite

Al 2
and fixed, and a = lﬁ3 - %{51f52)

12

. For three gquarks in a color-decuplet

state,

1
<10(gqq) [ [10{gaq)> = - FIV(ry,) + Vir,,) + V(r;))l, (2)

since each qq pair is in a color sextet, and thus <HI> is negative semi~
definite and unbounded below in this case.
4, The instability of the color-octet three-quark states was discussed in

Ref. [24,25].
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Now we consider the general case of an arbitrary number of quarks
end antiquarks in a given color representation r, labeled by a Young
tabtleau with fl boxes in the first row and f2 boxes i; the second row.
We will show that for each r except r = 1, 3, and 3% we can choose a
sequence of wave functions for which the energy is unbounded below.
1f £, 2 f,+1, separate a subsystex I {for exarple, a quark) in a coler-
triplet state by a large distance & from the remazining particles in

subsystem II. This latter subsystem can be chosen to be in the represen-

tation with Young tableau (fl—l,fz). Then

<I;HIjr> I - l

(o)

(2i1-2-52)Y(a) + =-®, 8 >, (13

unless (fl'fZ) = (1,0}); i.e., unless 1t is a cclor triplet. If fl = f2’

separate a subsystex I1' (for example, an antiquark) in a color-antitriplet
scate by a large distance a from the remaining particles in subsysten II'.
This latter subsystem can be chosen to be in the representation with Young

tableau (fl—l,fz-l). Then

cr|H |r> ® - 2(f. 4£ -2)V(a) » -~ =, a + =, (11)
1 A3

2

unless (fl’fZ) = (0,0) or (1,1); i.e., unless r is a color singlet or a
color antitriplet.

Inclusion of kinetic enerpy and the constraints of the Pauli principle
8o not change the above conclusions. Both effects can be taken into account
by using properly antisymmetrizad wave functions with the subsystem which isg
separated by the large distance a in, for example, a Gaussian wave packet,

The kinetic energy remains constant, and the exchange terms decrease with



Gaussian rapidity as a -+ =. Thus HI and H are unbounded below in all

color sectors except the singlet, triplet, and antitriplet.

Even in the coler-singlet sector of physical interest, unphvsical
states of large negative energy can occur for potentia&s which increase
too rapidly at large distances. Consider a color-singlet system with 2n
quarks and 2n antiquarks, for the general color group SU(N). Assume that
the antiquarks are all in the neighborhood of the origin, and in the
totally symmetric color state. Assume that n of the quarks are in the
neighborhood of =~a on the x-axis, and that the other n quarks are in the
neighborhhod of +a on the x-axis, with both sets of n quarks separately in

the n-particle symmetric color state, The potential energy of this

configuration is

V= F_(-8) F,=(0) + F,=(0)-F_(a) + F (-a)°F_(a) . (12)

D

2 (E)’

Standard formulas [26] give Cz(h)(ﬁ) = n(N-1) (n¥7)/N. Using (Fn+F25)2 =C

and (Fn+Fn)2 = C (N}(ZE), we find

2

V = kn(¥-1) [2%n-2(2n+%) Ja® /1 (13)
for a confining potential kr®. This potential is unbounded below for
a > 2+ an{1+M/2n)]/in 2 » 2, n + =, N fixed. {14)

(As usuzl in such arguments, the particles at the three locations can be

placed in fixed wavefunctions with finite interparticle separations to

avoid getting large kinetic energy.) -
For smaller values of a, states with unbounded negative energy probably

do not occur. This can be shown rigorously for the harmonic escillator



poetential, a = 2, where V is positive semi-definite for color-singlet states

with anv nucber of quarks and antiquatks, since for this case [11],

- e 1n(a),2 (), 2 _(a)
By L“Q[Q 1° - zu[ziri x5 F }+} . . (15)
where F(u) = IiFi(u), [A,B]+ = AB 4 BA, and Q(a) = Eigifica). The stated

result fellows from the fact that P(G)

annihilates color-singlet states.
Sirilar results hold for the abelian case [11,21,22], For & neutral
systex (quﬂﬁ)’ H is unbounded below for a > 2, &s is shown by the example

of two quarks and two antiquarks, with the quarks across one diagonal of =&

square of side a and the antiquarks across the other diagonal. Then
V= k[&aG—Z(JEé)GJ + =, a3 > foraz2. (16)

The boundary case of the harmonic oscillator is also patholegical, since
the suz of all the two-body potentizl terms satisfies an algebraic identity,
50 that
2 2 2z
vkl T ofxo-y [T - Uxo-x T4 [y-yl 00
i,3 ~i i<y ~i ~j Ad &)
2
= kiiggi-?zjl-, an

where the Ei(xi) are quark (antiquark) coordinates for N quarks and N antiquarks.

The Schrgdinger equation with the potential (17), which is exactly
solvable, does not have a spectrum corresponding to W mesons [11]. For N
quark-antiquark mesons, the 6N degrees of freedom consist of N 3-dimensional
degrees of freedom with discrete spectra corresponding to internal energles
(one for each meson), N-1 3~dimensional transiational degrees of freedom of
relative motion of the mesons, and one 3-dimensional degree of freedom of
translation of the whole system. Neglecting the kinetic energies, the ground

state energy of the set of N mesons grows as N. For the system with the
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potential (17), there is only one 3-dimensional degree of freedom whose spectrum

is a discrete, internal energy, 6N-6 continuous internal degrees of freedom,

and one 3-dimensional degree of freedom of tramslation of the whole system.

Neglecting the energy associated with the continuous degrees of freedem, the

ground state energy of the discrete internal degree of freedom grows as NI/Z.

Further pathologies in both abelian and non-sbelian models are given in [21,227.
Although potentials with o =4 have recently been suggested in connection -

with QCD sum rules [27], confining potentials used in particle physics

usually do not increase faster than the harmonic oscillator, and unphysical

stztes with large negative energy do not occur. However this discussion
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shows the delicate nature of the cancellations between confining and
ant{confining forces which are necessary to avoid this difficulty.
Results for hadron interactions which are very sensitive to the details
of this cancellation can be questioned., 1In particular, extreme care
must be taken to avoid unphysical effects in approximation methods
which do not rigorously restrict all allowed wave functions to the color-~
singlet sector. Variational methods, for example, can obtain a spurious
léwering of the energy by adding tiny amounts of non-singlet wave functions
with infinite negative energy.

One example of this difficulty is in the Hartree-Fock approximation
for a many-quark system, in which each quark is assumed to move in the
average field of the others. The Hartree~Fock wave function is not a pure
color singlet; the color of the odd quark must be correlated in a complicated
manner with the colors of the other quarks in order to produce a color-singlet
state. Similarly in the treatment of large systems as infinite quark mette:,
by anazlogy with infinite nuclear matrer, it is nor sufficient for the
local color density to be a singlet only on the average. Any fluctuations
in color density at different points must be correlated rigorously in order
to give a pure singlet state for the infinite system., Otherwise tiny
admixtures of nonsinglet states with high negative energies can introduce

spurious effects.

III. COLOR VAN DER WAALS FORCES

Another manifestation of these unphysical long-range interactions
occurs in the generation of long-range van der Waals interactions between
hadrons. The interaction (1) has a vanishing expectation value between

two separated color-singlet hadrons; however, this comes about because
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the attractive and repulsive interactions between pairs in the two
separated hadrons exactly cancel for singlet states. Eecause of this
cancellation, small errers relative to the Eonfining potential can lead

to large errors relative to the van der Waals potentials which we discuss
below. The state of two separated color-singlet hadrons is not an eigen-
function eof the interaction (1), which has matrix elements connecting this
state with states in which both hadrons are color octets coupled to an
overall color singler. It immediately follows from the variatiopal princi-
ple that the energy of a state of two separated color-singlet hadrons can be
lowered by admixing a8 small amount of the separated color-octet state,
since the only contribution to the emergv which is linear in the adrmixed )
amplitude comes from the off-diagonal matrix elements of HI and the phase
can be adjusted to be negative. When HI is treatedin second-order pertur-
bation theorv, this gives the standard type of van der Waals interaction

which results from mutual polarization of the two separated objects and is
attractive and decreases like a power of the distance. Because the polariza-
tion exists in color space as well as configuration space and the potential
is confining, the power law is different from the conventional non-confining
abelian case. Modified second-order perturbation theory for the energy of
two hadrons separated by a large distance a gives
2 2,2 (18)
Ez(a)z[v V(a)<xr“>1"/V(a),
where <r2> is the mean square radius of the individual hadron and a2 >> <r2>.
The expression (18) 1is just the ratio of the square of the interaction
matrix element to the energy denominator. The interaction is expanded in
powers of r/a and the first nonvanishing term comes from the quadratice

term. An additional power of V appears in the energy denominator because
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the attractive and repulsive confining potentials no longer cancel when

the individual hadrons are not color singlets, and this term dominates the
energy denominator at large distances. For the case of a power law potential,
V(r) =x°,

£, (a) ecr®>? v(a)/at « a4 (19)

For the particular case of the Quigg~Rosner legarithmic potential,

V= 1og(r/ro)
Ez(a) a<r2>2a-a/log(af:°) « l/a'{l log(a/ro). (20)

We now demonstrate the validity of the result (18) in a number
of specific cases. We should like to go bevond perturbation theory and use-
the variational principle just to verify that the peculiarities of confinement
do not destroy the validity of the perturbation expansion. Because the
Tealistic case of two three-~guark baryons with three colors and the full
antisymretrization required by the Pauli principle is complicated, we
consider two simplified cases:

1. Two quark-antiquark mesons with three colors but with different
flavors for the quark and antiquark pairs so that antisymmetrization is
not necessary.

2. Two two-quark baryons in a model with two colors, spin and flavor
suppressed, and the full permutation symmetry required by the Pauli
principle.

In both cases the qualitative results of (18) are obrained, thus
confirming the conclusion that the addirive two-body confining model
possesses long-range interactions which are in contradiction with experiment
and can be used neither to calculate nucleon-nucleon forces nor the bulk
properties of quark matter. The physical reascn for this difficulty is

clearly indicated by noting that the long-range interactions between hadromns
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must come from multigluon exchange, since single-gluon exchange between
quarks does not give confinement. There is no obvicus reason why multi-
gluon exchange over large distances should be parameterized as a two-body
interaction between quarks, even though this parameterization agrees with
experiment for the short-distance interactions responsible for the static
properties of hadrons. There are retardation effects, known both in the
abelian and non-atelian cases, which reduce the effective van der Waals
interaction [1,28,2%9]. 1In the non-abelian case there are, in addition,
color oscillations which must be correlated between two non-singlet
hadrens which are in an overall color-singlet state, For two color-
octet hadrons in a color-singlet state, each individual hadron has color
quantum numbers which oscillate about the eight states of the octet at a
frequency given by the energy denominator of eq. (13), and these
oscillations must be correlated between the two hadromns in crder to
have an overall celor singlet.

This model clearly must break down when the period of the color
oscillations becomes short in comparison with the time required for a
gluon to traverse the distance between the two hadrons. This occurs

when

it

wt ¥ a v{a)/he >> 1, 21)

where v 2 V(a)/K is the frequency of color oscillations and t = a/c is
the time required for a gluon to travel between the two hadrons. Note
that the coler correlations introduced by this model are not Einstein-
Podolsky-Rosen correlations initially introduced into a system which is
later separated. Here we begin with two separated color-singlet states

which are completely uncorrelated at very large distances. The interaction
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(1) creates color polarizations, cerrelations, and oscillations at inter-
mediate distances satisfying the condition {(21) when the two hadrons are
brought together., These effects are clearly unphysical and result from
the use of an instantaneous "action at a distance" potential which intro-
duces unphyvsical correlations between events separated by space-like
intervals.

A correct description of long-range forces between quarks must also
take rultiparticle channels into account. Even in the simplest case of
charmonium, the single-channel potential picture breaks down above charm
thresheld and the coupling to open decay channels seriously affects the
spectroscopy (30). The infinitely rising confining potentizl has neither
real theoretical nor phenomenological justification, The separation of
non=-singlet quark élusters does not require infinite energy fcr large
distances, The act of separation polarizes the vacuum, creates quark-

antiquark pairs, and eventually produces free hadrons. If it is possible

at all to treat interhadron forces with a fixed number of quarks and anti-

quarks, the interquark potential should develop an imaginary part at large
‘distances, rather than remaining real and becoming infinite.
We now consider the two cases in detail
1. 7Two quark-antiquzrk mesons in SU(B)COlor.
For two quarks and two antiquarks iInteracting with a non-abelian
color-exchange interaction, the van der Waals interaction has been cal-
culated using the same apptoach of modified second order perturbation
theory as for the abelian case. However, the intermediate state in the

perturbation treatment for the force between two sepacated clusters

involves a polarization of each cluster in color space as well as in
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configuration space, This arises because an interaction having a color
dependence Fi'?j acting on quarks 1 and j in two separated color-singlet
clusters changes each cluster to an octet in SU(3)C°1Qr (or to the adjoint

representation of SU(n) for the general case of SU(n) ). The energy

colar
for producing this color-excited state thus appears in the energy denozminator.
This additicnal energy term comes from a term in the interaction which
vanishes for color-singlet clusters but does not vanish for non-singlet
clusters and gives a contribution equal to the two-body potentizl., Thus
for a pover-law potential which goes as ra, the abelian result that the
van der Waals force goes as 323—4 is chaﬁged to 33-4 in modified second
order perturbation theory, because the energy denominétor introduces an
additional factor of aa,

The same result is obtained in a static treatment which neglects
kinetic energies and diagenalizes the potential exactly. Fer the case
of color-singlet states of two quarks and two antiquarks the potential

is a 2x2 matrix in color space which has been diagonmalized for the case

of SU(B)color to give the eigenvalues [10,17]
Ut = (7/16)(u +u. ) + (1/8)u_ % (3/16) [8(u_-u )2 + (u +u_-2u )2]1’2 (22a)
a £ q " a B a B q
where

u = u + u u, = u

e M VL s VR

235 Vg T M1 T Uy e (22b)

A
and uij is the interaction between particles i and j; particles 1 and 2

are quarks and particles 3 and 4 are antiquarks.
To study the van der Waals problem, we consider the potentizl in the
configuration where quark-antiquark pairs (13) and (24} are separated by

a distance a which is large compared to the size of each cluster. We
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expand the potentials Uios Uopay Uy and Ua, aroundizlzﬁgjﬂ ~2a. The zero

crier values of ug and uq for this case are us = uq = 2u(a), Thus uB—u

is higher order, and the potential can be expanded in powers of ug-u

to give
2
(UB"U ) 3
f - - — a . -
U u Q(UB_Ua) + O(uB uq) . (23)

The first term is just the binding energy of the two clusters. The
second term is the van der Wzals interaction between the two clusters.
Taking the expectation value of this term with the wave function chosen
to give the cclor-spatial correlations to minimize the potentizl energy

gives the result

2
1 du? d"u,2 2 2
EZ(E-dr)rza + (drz)r=a]<r13 z
U= U T 162[u(a)—u(r13)] ’ ’ (24)

where we have kept terms up to order r132.and evaluared the expectation

. 2 2 . . . . . . .
value by assuming SEya> = T2 and assuring isotropic distributions in

the wave functions for L and Top u(r) denotes the spatial dependence

of uij' Thus we can write

2

1 du,2 d7u.2 2.2
v = 2 ar'r=a * (drﬁ)r=a)<r13 g (25)
va¥ — 162{u(@)-ulr, ;)] ’
where Uvdw denotes the van der Waals force given by the second term of (24).

. a
For a power law potentizl v = kr , ¢ > 0,

U = —[kaz(a2—2a+3)au-a-<r132>2]/162 . (26)

vdW

For a logarithmic potential u =V log(r/ro),
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-4 2.2
Upaw = Vo2 <T137 /54 1og(a/rl3) . (27

We can include the contribution from the kinetic energy by using the
virial theorem. We assume that the kinetic energy is due entirely to the
relztive motion within the two clusters, and neglect the kinetic energy
of the motion of the cluster as & whole. This corresponds to the degrees

of freedoz denoted by 12 and Eage The virial theorem then gives the

expectation value of the kinetic energy as

ac! ar’ dut
<T> = <riyar YT ar T T3 EgrL Y (28)

13 24 13
where we have used the symmetry between the two clusters.

Since the virial theorem is derived from the variational principle by
minirmizing the energy with respect to scale changes, the expression (28)
holds for any approximate wave function where the cluster size is adjustec
to minimize the energy by scale transformations. Note that there is a
small change in cluster size produced by the van der Waals force (25).

The contribution of this force gives a lower energy if the size of the
cluster, represented by <r132> is increased. If the cluster size is set

by minimizing the energy of the clusters themselves, it is shifted slightly

by the action of the van der Waals force. This then also gives a gain in
kinetic energy. 1t is just this gain in kinetic emnergy which is automatically

included by the use of the virial theorem. Substitution of (25) iate (28)

gives

<T> = (1/2) <r dufdr> - 2 U .. . (29)

We thus find that the total energy of the system is given by

E =.<H> =E =3V 44> (30)
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where Eo is the total energy, kinetic plus potential, of the two clusters
when the van der Waals force is neglected., Thus the effect of the
van der Waals force is enhanced by the kinetic energy contribution, but

-

hzs the same power behavior.

$ 7
2. Two baryons in SL(Z)Color.

To make our discussion as simple as possible, we consider a model in
which the color group is SU(2), so that two quarks in an antisymmetric
color state correspond to a baryon, For SU(Z)color’ the three Fauli
matrices replace the eight X's in (1). We also suppress the spin and
flavor degrees of freedom of the quarlks, and assume the quarks are
nonrelativistic., Since we are interested in the residual interaction
between two cclor-singlet baryons in our SU(Z) model, we consider a four-
quark state whose color representation belongs to the four-box square
Young tableau (2,2). We construct two orthogonal color isospin tensors

which correspond to four quarks in a color singlet:

A NG Pl LSS TLE S L T (31a)

and

p-1-2H3Mu 6‘1 (EU3H1

AL A I P P L I L (21b)

These tensors transform under the symmetric group S4 according to the
square Young tableau; this representation is two dimensional. Ve satisfy
the Pauli principle by requiring the wavefunctions Fl and Fi in the
representation of the four-particle system to have the appropriate

permutation symmetry under permutations of the coordinates X through‘gé,



=19~
HiHzM3HYy = aMilH2¥3Vy
F (x10%p%30%,) = A FyGpdp ) *

pY1k2M 3ty F,(x (31¢)

12X Xy0%s)
The wavefunction for two quarks in a color singlet (i.e. an sU(2)
“"baryon") has the form

F(l)uluzﬁfl’ﬁz) = gV1H2 F(1>€§1552). P symetric; (32)

where F(l) satisfies the Schr¥dinger equation

1 2
[- 2o sz

2.,k vy 1 e
+Ex2) + 5 \12} F (51,352) ETF (51,1:2) . (33)

where V_, = lxi - X

i]

a : ‘
j] . Two quarks in a color triplet have the wavefunction

(3yuym2 . w2 (3) ‘ (3 : fce
F €§1”§2) n F £§l¥52>’ n symmetric and F antisymmetric; (34)

where F(3) satisfies the SchrBdinger equation

1 2 2 k s
[—Zm(v +v)-6 Vv

“*1 2

(3)(x

-»1’32) {35)

(3) .

The spectrum of Eq. (35) extends to minus infinity; thus two quarks in a
color-triplet state form an unstable system and the quarks repel each
other and go into infinity. The Schrédinger equation for the four-quark
color-singlet system expressed as a matrix equation for the wavefunctions

Fl and FZ is

F F
1 1
[F]w: _E (36)
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where
J = \:13 + \’23 + vl& + v24 ’ (37a)
K=V, +V,, ) (371)
L= V13 + \724 - Vlé - ‘.’23 . (37¢)

a
and Vij ]xi-xj| .

We find the dependence of the energy of two baryons en the distance
of separation a using a variational calculation of an approximate Born-
Oppenheimer Hamiltonian in which we neglect the translational kinetic

energy of the baryons? T¢ make this explicit, we introduce co-ordinates

l& >, a = 2—1(: +x, =X, =X

-1,
R=d4 7@y 2. 2 _~3~.'4~1~2)'512

= $17Zpe 209 Iy T ¥3Tae

The Born-Oppenheimer Hamiltonian is

J_k L
-~ 3 6 i~
H---!'-('g2 +972 )L+ k 23, (38)
m T YTy L K
23 2
where r._ = -3 + 2-1{r -r. )}, T., = =a + 2 “{r.,~r..)
~ll ~ ]2 A347 7 24 34 ~127°

Tyt 2T e, A gyt 3 - 2 ().

It is convenient to write the functions Fl and F2 in terms of sums
of products of wavefunctions for two particle systems. The most general
form of the functions F1 and F2 in terms of such products of two-particle
clusters in which the clusters are either both in the isocolor-singlet
state with amplitude cosf or are both in the isocolor-triplet state with

amplitude sinf (in either case the overall four-quark systen is in &

singlet state) is

5. We are indebted to J. Sucher for suggesting this approach.
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s Py e - Y - rple teess
+ 2-3f2 3-1f2[ (3) gz) + 2F§Z) ig) . ng)céi) .
srey - ey - Ty ey deme (359
e DD D) APl ey
B S Ty
2-3/2[ ig) éz) + F(B)G£§> + iz) (3 . ég) {z}] (395)

where one cluster is represented by the function T and the other cluster

separated by a distance a is represented by the function G and where

Fg§lﬁ§2) is abbreviated by FlZ’ etc., and, finally, F(l) or G(l) stands
for a singlet state and F(B) or G(3) stands for a triplet state. The

Pauli principle requires that the singlet functions are symmetric and
the triplet functions are antisymmetric under jinterchange of their
arguments. We take the singlet functions to be ground-state eigenfunctions
of the two-body singlet potential, (33) and the triplet functions to be
the first antisymmetric excited eigenfunction of the same equation. We
can then use (33) to eliminate the kinetic energy in favor of the
appropriate two-body potential and the energy eigenvalue. When the
clusters are well separated, exchange terms are exponentially small,
and we drop them. In addition, as stated above, we have dropped

the center of mass energy of each cluster. The expectation value

of the Hamiltomian in this variational wavefunction is

<H> = E(a) = [ d3r Ta, [Acosze+BsinB c035+Csinze] , (40)

12 ¢



wvhere
_ (1.2
A= 2EO(F12 634 ) (41a)
=1/2 (3).(3) (l) (1) ‘

B e 3 TRV 4tV Vo Vo) F 7G5 Ty Gy s (41%)
and

C = [26.-(2K/3) (V. 4V, V4RI (v v, v, v, 0136302 (41c)

1 127V EMP LA TAAPYRRALS P

Using the normalization properties of the two-body states, introducing the
color-polarization dipole matrix elements, and keeping terms relevant for

O<a<5, we can write the energy as a function of sevaration.

E(a) = Acosze + Bsinfcost + Csinze . L2
where

A= 250 , where € is the ground state "baryon" energy, (43a)

B = 37172 kap {43b)

c = 4k/Da®, (43c)

p = ~§31)>'i€é31)>+(0-2)("Q—'S.E(.Bl)>)(é:3é31)>)]au‘2 R (43‘1)
and

*

<OV . e r F (e, ete. (43e)

An alternative form for the energy is
2,1/2 A
E(a) = (A+C) + —{(A -C) 2,5 ] sin(28+¢) , (44a)

where

sing = (a-C) [ (a-C)2+8%)~ Az (441)
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The minimum of the energy is

1 1 2 _2.1/2
Emin = 2(A+C) - 2[(A-C) +B ’

wvhere the angle at the minimum is

1 T
fon T 77 T

(45a)

(45%)

Our final results are that the minimum energy is6

- 2 2 a-=4
Ein ~ 250 - (1/16) ka” p" a

and the mixing angle is

(4%a)

(465)

Since the variational calculation gives an upper bound to the energy,

-4
we are assured that the van der Waals term decreases ne faster than au .

For the most likely case of the linsar potential

find the constraint

]Uvdw (a)] = Xy (ao/a)3 200 MeV, X

a = lfm, from data on Cavendish-type experiment

result of (46a),

. 2 -3
UvdF (a) = -(1/16) k p'a .

{o=1), Feinberg and Sucher [1]

3 € 107%2 R (47)

s. Comparison with the

48)

6. Tor completeness, we note that for o > 2 the

Poin ™ (1-a)<§F>'<§G>. which occurs when the

winimum value of p is

color-dipole transition

moments are colliuear with the separation between the clusters and have

opposite direction, and that for a < 2 Ppin = = Ip7 Fo» which occzurs

when the transition moments also have oppesite direction, but are

orthogonal to the separation between the clusters.
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for o = 1, using the estimate p 1 fmz, gives

kK <1.6 x 107 g2 (492)
to be cozpared with

k=5 fo (495)

found froc chzrmonium data by Eichten, et al, [31]). Thus the van der Waals
interaction which follows from a linear confining interaction in the
priential model is very strongly ruled out {1,14,18] The potential model
does not include retardation effects. Inclusion of retardation seens

a=4 to au-S[l]. 3

likely to change the van der Waals interaction from a
For the linear potential this changes am3 to a-a, for which the bounds of {11

are weaker, but still significant. Using the estimate

vt r 16k p

-4
: 2 4 (50)
vl
-
for a=1 with retardation, and, again, taking p ~ 1 fr", the bound

3

v . .(a)] = A&(ao/a)q 200 MeV, A, < 3 x 10° (51)

vdW
gives

-2 =2 :
k<4.8x10° fm ~ , (52}

which 1s still two orders of magnitude smaller than (49b). Thus, even with

retardation, the additive two-body potential model for the confinement of

7. We comment briefly on simplifying assumptions made in this calculaticn.
The use of non-relativistic kinematics is not important, since confine-
went is a low-energy or long-distance phenomenon in which relativisite
corrections should not be important. The use of SU(2)C°1°I instead of

Sv(s)color should not be qualitatively significant.
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guarks leads to van der Waals Interactions which are in strong contradiction

with experiment, and this model cannot be used to derive the nucleon-~nucleon

interaction.
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